Monday, 22 December 2014

Konversi Antar Basis Bilangan


Dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah:

1. Mengalikan bilangan dengan angka basis bilangannya.
2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.


Tabel Bilangan Oktal
Digit Oktal
Ekivalens 3-Bit
0
000
1
001
2
010
3
011
4
100
5
101
6
110
7
111

Tabel Bilangan Heksadesimal
Digit Desimal
Ekivalens 4-Bit
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A (10)
1010
B (11)
1011
C (12)
1100
D (13)
1101
E (14)
1110
F (15)
1111

 Konversi Biner ke Oktal

Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = ...... (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8)Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.

Konversi Biner ke Hexadesimal

Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = ...... (16).  Solusinya adalah kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya : 1110 = E Hasil konversinya adalah: E3(16)

Konversi Biner ke Desimal

Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ......(10) diuraikan menjadi: (1x24)+(0x23)+(1x22)+(1x21)+(0x20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basisbiner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.

Bilangan Desimal ke Biner
Contoh berapa bilangan biner dari bilangan desimal berikut, karena bilangan biner adalah bilangan berbasis 2 maka cara mudahnya adalah  : Berapa bilangan desimal 8 jika dibinerkan,
8 : 2 = 4 sisa 0
4 : 2 = 2 sisa 0
2 : 2 = 1 sisa 0
1 : 2 = 0 sisa 1
hasilnya adalah 1000
Konversi Oktal ke Biner
Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = ...... (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan.     Hasil:101010011(2)
Konversi Hexadesimal ke Biner
Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak dua bit. Seperti pada tabel heksadesimal. Contoh: 2A(16) = ......(2)
Solusi:
A = 1010,
2 = 0010
caranya: A=10
10 : 2 = 5 sisa 0
5 : 2 = 2 sisa 1
2 : 2 = 1 sisa 0
1 : 2 = 0 sisa 1
ditulis dari hasil akhir
hasil :1010
2:2=1 sisa 0
1:2=0 sisa 1
Ditulis dari hasil akhir hasil, jadi hasil dan penulisannya 0101010 sebagai catatan angka 0 diawal tidak perlu di tulis.

Konversi Desimal ke Hexadesimal
Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal.
Contoh: 75(10) = ......(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)

Konversi Hexadesimal ke Desimal
Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ......(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai "11". (4x161)+(11x160) = 64 + 11 = 75(10).

Konversi Desimal ke Oktal

Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ......(8).
Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)=
25 : 8 sisa 1 dan hasilnya 3. Dengan mengurutkan dari hasil terlebih dahulu, lalu sisa, maka hasil dari konversinya adalah  31(8).
Konversi Oktal ke Desimal
Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini: 31(8) = ......(10) Solusi: (3x81)+(1x80) = 24 + 1 = 25(10).



Berlangganan artikel via email :

Delivered by Rifki's Blog

Share On:

Related Post:

Post Comment

Belum ada komentar untuk "Konversi Antar Basis Bilangan"

Post a Comment

terima kasih telah memberi komentar

 
 
©2014 All Right Reserved - Rifki's Blog
Design by Rifki's Blog | Powered By Blogger.com